Nuclear Carrier Enterprise



060206-N-7748K-002 Atlantic Ocean (Feb. 6, 2006) - The nuclear-powered aircraft carrier USS Enterprise (CVN 65) prepares to conduct a refueling at sea with the guided missile destroyer USS McFaul (DDG 74). Enterprise is currently underway conducting routine carrier qualifications in the Atlantic Ocean. U.S. Navy photo by Photographer's Mate 3rd Class Josh Kinter (RELEASED)


Operational experience with the Forrestal class prompted modifications to the design for the follow-on ships of the Kitty Hawk class. The most significant was a rearrangement of the flight deck layout. The island and the middle starboard side elevator changed places, creating an enlarged deck park ahead of the island that was served by two elevators and fed aircraft directly to the two forward catapults. The single port side elevator moved aft toward the after end of the flight deck, clearing the forward end of the angled deck and also enhancing the utility of the two waist catapults. The large forward 5-inch gun sponsons were deleted because they limited speed and were vulnerable to damage in heavy North Atlantic weather. This amended general configuration proved so successful that it has served as a pattern for all subsequent United States Navy carriers.

The ultimate alteration to the design of large American attack carriers was the installation of a nuclear power plant. There was considerable debate about the wisdom of the nuclear power option for aircraft carriers, since the ships themselves were so large and capacious that it was not at all clear that there would be substantial benefits in terms of higher sustained speeds or extended operational range commensurate with the very appreciable additional costs of construction. The very large power plant initially required was not in itself substantially bigger than a conventional installation, though it was much more expensive. The liquid loading required for underwater protection that usually would have comprised the necessary fuel oil for a conventional plant was translated into additional aviation fuel, 2,720,000 gallons versus 1,186,000 gallons in the earlier classes. Consequently, the nuclear carrier Enterprise could operate a larger air group than usual for a longer period and was enlarged to take advantage of this fact, increasing the ship’s aviation ordnance capacity to 2,520 tons instead of the 2,000 tons of its conventionally- powered precursors. The Enterprise also carried a much smaller island, since there was no need for a stack. The island’s faces mounted the flat panel arrays for advanced electronically scanning radars. The combination of greater size, a larger air group, advanced electronics, and nuclear power made the Enterprise very expensive, costing some 40 percent more than the earlier carriers, and leading to the decision to omit all defensive armament in a cost cutting endeavor. In reaction, instead of a new carrier ordered every fiscal year from 1952 to 1958, for two years not one carrier was included in the naval appropriations and Defense Secretary Robert S. McNamara imposed a schedule of one carrier every two years from 1961.

Furthermore, the next two carriers ordered, the America and the John F. Kennedy, both were conventionally powered, and largely repeated the Kitty Hawk design, although the John F. Kennedy introduced a new narrower side protection scheme designed for use in future nuclear powered carriers in an attempt to reduce the space it consumed and thus prevent the escalation in size that occurred with the Enterprise. Reflecting the increased threat that Soviet submarines posed to American carrier task forces, both ships also received large forefoot domes for sonar apparatus, although only the America actually carried its SQS-23 set since the John F. Kennedy’s was omitted to save money.

The final design to date is that of the Nimitz class. The main changes from the Enterprise design flowed from the availability of much more powerful individual reactors that allowed the use of only two units rather than the eight of the first nuclear powered carrier. Internally, this also allowed concentrating the ordnance magazines and reducing their number from three to two. Unlike the earlier ship, this class also reverted to dividing the hangar into three bays with fire curtains, as in the conventionally powered ships, rather than the two bays of the Enterprise, thus improving fire protection and providing additional support for the flight deck. Flight deck arrangements were modified slightly by decreasing the angle of the landing area to improve air flow abaft the ship and fitting four very long C-13 catapults to cope with ever heavier aircraft (the power of a steam catapult is directly proportional to its length). The use of the narrow side protection system first applied in the John F. Kennedy allowed aviation fuel capacity to rise to 2,600,000 gallons.

Secretary McNamara, as a result of the navy’s demonstration of the effectiveness of carrier strikes in Vietnam, in February 1966 determined that the fleet should maintain a force of fifteen carriers: three of the Midway class, eight of the Forrestal type, the Enterprise, and three new nuclear powered ships to be built to a common design at two years intervals starting with the Nimitz in fiscal year 1967 with the goal of completing all three by 1975.

Laid down: February 4, 1958. Launched: September 24, 1960. Commissioned: November 25, 1961

Builder: Newport News Shipbuilding & Dry Dock Company, Newport News, VA

Displacement: 75,700 tons (standard), 89,600 tons (full load)

Dimensions: 1,123’0″ (oa) x 133’0″ x 36’0″ (full load)

Flight deck: 1,100’0″ x 252’0″

Machinery: 4 Westinghouse geared turbines, 8 Westinghouse A2W reactors, 4 shafts, 280,000 shp = 35 knots

Endurance: 90 days

Aircraft: 99

Complement: 5,500

Design: Although the weight of the Enterprise’s nuclear power plant was not very much greater than that of a fossil-fueled installation, the carrier was much larger than its conventionally powered contemporaries because of the space required for the large liquid loads needed for underwater protection. Since most of the liquid load was aviation fuel, the Enterprise was capable of embarking a larger than usual air group and of operating it continuously for longer. The ship’s arrangement was generally similar to the earlier Kitty Hawk, but the island was much smaller (because it did not have to accommodate the stack) and no defensive armament was fitted to cut costs. The Enterprise received flat panel electronically scanning radars installed on the four faces of the island structure: SPS-32 search and SPS-33 three dimensional search.

Modifications: In 1967 two 8-tube Sea Sparrow launchers were fitted, controlled by modified APQ-72 aircraft fire control radar sets. The following year an SPS-12 air search set was added to its suite. A refueling and refit process began in 1991 and lasted until 1994, during which three Mk. 15 Phalanx 20mm mounts were added, the bridge reconstructed, and SPS-48C air search, SPS-49 long range two-dimensional air search, and SPS-65 Sea Sparrow search radars replaced the original outfit. Mk. 23 target acquisition radar, SPN-41 landing aid, and two SPN- 46 air traffic control radars were added.

Service: The Enterprise was in the Atlantic Fleet from commissioning until 1965, participating in the blockade of Cuba during the missile crisis, and then deploying to the Mediterranean. In 1965 it transferred to the Pacific Fleet and began operations on Yankee Station, flying strikes against North Vietnam until 1973. It remained in the Pacific until 1990, during which time it deployed to the Persian Gulf in 1988 in support of the tanker war. The Enterprise returned to the Atlantic Fleet after its refit and was engaged during Operation Southern Watch, enforcing the “no-fly” zone over southern Iraq, until 2000. In 2001 the Enterprise formed part of the strike force for Operation Enduring Freedom, the war against the Taliban in Afghanistan.


Leave a Reply

Your email address will not be published. Required fields are marked *